
Межрегиональная олимпиада школьников на базе ведомственных образовательных учреждений по математике в 2014/2015 году

Вариант 1

- **2.** Даны три числа a,b,c такие, что a+b+c=1 и $a,b,c\geq 0$. Докажите, что $a(a-1)^2+b(b-1)^2+c(c-1)^2\leq \frac{4}{9}$.
- **3.** Уравнения $x^5 + x^4 2x^3 + 2x^2 2x 3 = 0$ и $x^5 + x^4 x^3 + 4x^2 4x 6 = 0$ имеют два общих корня. Найдите их.
- **4.** Найдите наименьшее натуральное число n такое, что n > 2015 и $\left[\sqrt{9n+2}\right] \neq \left[\sqrt{9n+4}\right]$. Здесь скобки [] обозначают целую часть числа. (Напомним, что целой частью числа x называется наибольшее целое число, не превосходящее x. Например, [3,7]=3.)
- **5.** Имеется n целых чисел $0,1,2,\ldots,n-1$. Переставив эти числа в случайном порядке, получим их некоторую n перестановку (i_1,i_2,\ldots,i_n) . Из исходного набора чисел $(0,1,2,\ldots,n-1)$ и этой перестановки (i_1,i_2,\ldots,i_n) получим новый набор чисел (a_1,a_2,\ldots,a_n) по правилу: $a_1 = r_n (0+i_1), a_2 = r_n (1+i_2),\ldots,a_n = r_n ((n-1)+i_n)$, где $r_n(m)$ остаток от деления числа m на число n. (Например, пусть n=3. Тогда, из исходного набора (0,1,2) и перестановки (i_1,i_2,i_3) = (1,2,0) получится набор (a_1,a_2,a_3) = (1,0,2), т.к. $r_3(0+1)$ = $1,r_3(1+2)$ = $0,r_3(2+0)$ = 2.)
 - а) При n = 9 приведите пример такой перестановки $(i_1, i_2, ..., i_9)$, что в соответствующем наборе $(a_1, a_2, ..., a_9)$ все числа различны;
 - б) докажите, что, если n=10, то какую бы перестановку $(i_1,i_2,...,i_{10})$ мы ни взяли, в наборе $(a_1,a_2,...,a_{10})$ обязательно встретятся одинаковые числа.
- 7. Найдите значение выражения $a^4 + b^4 + c^4$, если известно, что числа a,b,c удовлетворяют

соотношениям:
$$\begin{cases} a+b+c=4\\ a^2+b^2+c^2=9\\ a^3+b^3+c^3=19. \end{cases}$$

8. В окружности три хорды AA_1 , BB_1 , CC_1 пересекаются в одной точке. Угловые меры дуг AC_1 , AB, CA_1 и A_1B_1 равны соответственно 150° , 30° , 60° и 30° . Найдите угловую меру дуги B_1C_1 .

