Вариант 1

1. Лыжник спускается с вершины горы к её подножию за 10 минут, а сноубордист — за 5 минут. Спустившись, они тут же поднимаются вверх на подъёмнике, а затем сразу же спускаются вновь. В 12:00 они одновременно начали спуск с вершины. Впервые они встретились у подножия в 14:10. Определите время подъёма от подножия до вершины.

Решение:

Обозначим время подъема от подножия до вершины горы через x. Из условий задачи следует, что впервые у подножия горы они встретились через 130 минут. Значит впервые на вершине горы они встретятся через 130 + x минут. В таком случае x – это такое минимальное натуральное число, что

$$(5+x)$$
 - делитель $(130+x)$ и $(10+x)$ - делитель $(130+x)$.

Перебором устанавливаем, что x = 20.

Ответ: 20.

2. Решите уравнение $(x^2 + 3x - 16)(x^2 + 7x - 6) = 41$.

Решение: Перемножаемые трехчлены имеют одинаковые дискриминанты. Значит модуль разности корней первого трехчлена равен модулю разности корней второго. Это позволяет с успехом применить определенную "центрирующую" замену:

$$((x+1,5)^2-18,25)((x+3,5)^2-18,25)=41$$
. Замена $x=y-2,5$. Тогда $((y-1)^2-18,25)((y+1)^2-18,25)=41\Leftrightarrow ((y^2-17,25)-2y)((y^2-17,25)+2y)=41\Leftrightarrow (y^2-17,25)^2-4y^2=41$.

Получившееся биквадратное уравнение решается затем стандартным образом.

Otbet:
$$\frac{-5 \pm \sqrt{77 + 4\sqrt{114}}}{2}$$
, $\frac{-5 \pm \sqrt{77 - 4\sqrt{114}}}{2}$.

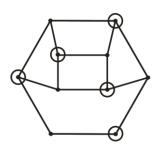
3. Найдите натуральное число n, ближайшее к 1022, сумма всех делителей которого (включая 1 и само это число) равна 2n-1.

Решение: Сумма делителей числа $n = 2^k$ равна $1 + 2 + 2^2 + \ldots + 2^k = 2^{k+1} - 1 = 2n - 1$. Ближайшее число вида $n = 2^k$ к 1022 это 1024. Остаётся проверить, что для 1023 соответствующее равенство не выполняется.

Ответ: 1024.

4. В пунктах A и B находится по автомобилю. Каждую минуту эти два автомобиля одновременно переезжают в какой-либо соседний пункт (пункты, соединённые отрезками, называют соседними). Докажите, что автомобили никогда не окажутся одновременно в одном пункте.

Решение: Выделим некоторые вершины графа, обведя их в кружочек. Изначально, один из автомобилей находится в выделенной вершине, а второй нет. Из выделенной вершины можно попасть только в невыделенную и наоборот (двудольный граф). Поэтому в одной вершине автомобили оказаться не могут.



5. Найдите наименьшее отличное от полного квадрата натуральное число N такое, что десятичная запись числа \sqrt{N} имеет вид: $A,00a_1a_2...a_n...$, где A — целая часть числа $\sqrt{N}, a_1, a_2, ..., a_n, ...$ — цифры от 0 до 9.

Решение: По условию существует натуральное n такое, что $n^2 < N < (n+1)^2$. Следовательно, существует натуральное a такое, что $N = n^2 + a$, $a \in (0; 2n+1)$. Далее, $n^2 < n^2 + a < (n+1)^2 \Leftrightarrow \sqrt{n^2} < \sqrt{n^2 + a} < \sqrt{(n+1)^2} \Leftrightarrow 0 < \sqrt{n^2 + a} - n < 1$. Следовательно, дробная часть числа \sqrt{N} равна $\sqrt{n^2 + a} - n$. Остается найти минимальное натуральное n, для которого существует натуральное $a \in (0; 2n+1)$ такое, что

$$\sqrt{n^2+a}-n<\frac{1}{100}.$$

Отсюда $\sqrt{n^2+a} < \frac{1}{100} + n \Leftrightarrow a < \frac{1}{10^4} + \frac{n}{50}$. Минимальное n равно, очевидно, 50, и тогда a=1. Следовательно, $N=n^2+a=2501$.

Ответ: 2501.

6. Запишем подряд все натуральные числа, кратные девяти:

У каждого из этих чисел подсчитаем сумму цифр. В результате, получим последовательность:

Найдите сумму первых 400 членов этой последовательности.

Решение: У натуральных чисел, кратных девяти, от 9 до 3600 надо подсчитать суммы цифр, а затем эти суммы сложить. Пусть c_9 – количество чисел в этом диапазоне, у которых сумма цифр равна 9, c_{18} – количество чисел с суммой цифр 18, c_{27} – количество чисел с суммой цифр 27.

Вычислим c_{0} . Будем все числа трактовать как четырехзначные: 9=0009, 18=0018, ... Рассмотрим сначала числа вида $0m_1m_2m_3$, т.е. те, у которых первая цифра ноль. Выясним сколькими способами число 9 может быть трех представлено виде суммы целых неотрицательных $9 = m_1 + m_2 + m_3$. Прибавим к обеим частям число 3: $12 = (m_1 + 1) + (m_2 + 1) + (m_3 + 1)$. Получается, что надо найти количество способов представить число 12 в виде суммы трех *натуральных* слагаемых. Это количество равно C_{11}^2 . (Действительно, представим себе на числовой прямой числа 1,2,....12. Между ними имеется 11 промежутков. Выбрав два промежутка, мы разобьем 12 на три ненулевых слагаемых.) Аналогично, имеется C_{10}^2 чисел с суммой цифр 9 вида $1m_1m_2m_3$, C_9^2 чисел $2m_1m_2m_3$ и, наконец, C_8^2 чисел $3m_1m_2m_3$. (Заметим, что при подсчете количества чисел вида $3m_1m_2m_3$ выполняется равенство $6=m_1+m_2+m_3$, поэтому

рассматриваемые числа $3m_1m_2m_3$ будут автоматически не больше, чем 3600.) В итоге, $c_9 = C_{11}^2 + C_{10}^2 + C_9^2 + C_8^2 = 164$.

Затем непосредственным подсчетом находим $c_{27}=10$, и, следовательно, $c_{18}=226$. Для получения ответа остается вычислить $9c_9+18c_{18}+27c_{27}$.

Ответ: 5814.

7. В окружность вписан равносторонний треугольник ABC, M – середина стороны AB, N – середина стороны BC. Докажите, что для любой точки K, лежащей на окружности, величина угла MKN не превосходит 60° .

M

Решение: Опишем окружность вокруг треугольника BMN. Она касается внутренним образом в точке B описанной около треугольника ABC окружности, поскольку точка B и центры окружностей лежат на одной прямой. Пусть сначала точка K лежит выше горизонтальной прямой MN. Пусть L – точка пересечения отрезка KN и меньшей окружности. Угол MLN равен 60° , и, следовательно, угол KLM равен 120° . Значит, угол MKN не превосходит 60° . Заметим, что в приведенном рассуждении не играет никакой роли то обстоятельство, что точка K лежит на окружности. Важно лишь, что она находится выше прямой MN и вне окружности, описанной около треугольника BMN.

Пусть теперь точка K расположена ниже прямой MN (этот случай на рисунке не отражен). Рассмотрим точку K_1 , симметричную точке K относительно прямой MN. Углы MK_1N и MKN, очевидно, равны. Точка K_1 лежит выше прямой MN и вне меньшей окружности. По доказанному, угол MK_1N не превосходит 60^0 . Утверждение доказано полностью.

8. Найдите три каких-нибудь натуральных числа a, b, c, удовлетворяющих равенству $a^3 + b^{2016} = c^5$.

Решение: Известно, что $2^n + 2^n = 2^{n+1}$. Поэтому числа a, b, c будем искать в виде $a = 2^k, b = 2^l, c = 2^m$. Остается подобрать целые неотрицательные показатели k, l, m так, чтобы выполнялись соотношения 3k = 2016l = 5m - 1.

Ответ: Например, $a = 2^{2688}, b = 2^4, c = 2^{1613}$.