Межрегиональная олимпиада школьников на базе ведомственных образовательных учреждений по математике в 2014/2015 году

Вариант 1

1. Пусть $f(x) = x^3 - x + 1$. Докажите, что для всех натуральных чисел m, больших единицы, числа m, f(m), f(f(m)) попарно взаимно просты. (Натуральные числа a, b, c называют n взаимно n постыми, если каждое из них больше 1, и никакие два из них не имеют отличных от 1 общих делителей. Например, числа 7,8,15 попарно взаимно просты, а числа 5,8,15 — нет.)

Решение: Заметим, что $m^3 > m$ при m > 1, и, следовательно, числа f(m) и f(f(m)) отличны от 1. Докажем, что числа m и f(m) взаимно просты. Предположим противное: у них есть общий делитель $d \ne 1$. Рассмотрим равенство $f(m) = m^3 - m + 1$. В правой части на d делятся все слагаемые кроме свободного члена, следовательно правая часть на d не делится. Но левая часть делится на d по предположению. Пришли к противоречию. Аналогично доказывается, что и числа f(m) и f(f(m)) взаимно просты. Чтобы доказать, что взаимно просты числа m и f(f(m)), достаточно заметить, что f(f(m)) представляет собой многочлен от m со свободным членом, равным единице: $f(f(m)) = m^9 + \ldots + 1$. Далее остается провести те же рассуждения, что и при доказательстве взаимной простоты чисел m и f(m).

2. Даны три числа a,b,c такие, что a+b+c=1 и $a,b,c\geq 0$. Докажите, что $a(a-1)^2+b(b-1)^2+c(c-1)^2\leq \frac{4}{9}$.

Решение: Равенство a+b+c=1 перепишем в виде a-1/3+b-1/3+c-1/3=0. Замена A=-a+1/3, B=-b+1/3, C=-c+1/3. И, поскольку числа a,b,c не превосходят 1, имеют место неравенства

$$A, B, C \ge -2/3. \tag{1}$$

В новых переменных $a(a-1)^2 + b(b-1)^2 + c(c-1)^2 = -A^3 - A^2 - B^3 - B^2 - C^3 - C^2 + 4/9$, и доказываемое неравенство принимает вид $A^2 + A^3 + B^2 + B^3 + C^2 + C^3 \ge 0$ или $A^2(1+A) + B^2(1+B) + C^2(1+C) \ge 0$. Это неравенство, очевидно, выполнено в силу (1).

Отметим, что возможно решение, использующее производную: несложно показать, что $\max_{0 \le x \le 1} \left(x(x-1)^2 \right) = 4/27$, максимум достигается при x = 1/3.

3. Уравнения $x^5 + x^4 - 2x^3 + 2x^2 - 2x - 3 = 0$ и $x^5 + x^4 - x^3 + 4x^2 - 4x - 6 = 0$ имеют два общих корня. Найдите их.

Решение: Поделим многочлен $P(x) = x^5 + x^4 - 2x^3 + 2x^2 - 2x - 3$ на многочлен $Q(x) = x^5 + x^4 - x^3 + 4x^2 - 4x - 6$ с остатком: P(x) = F(x)Q(x) + R(x). Общие корни многочленов P(x), Q(x) являются, очевидно, и корнями остатка $R(x) = -x^3 - 2x^2 + 2x + 3$. Поделив теперь Q(x) на R(x), получим в остатке $-x^2 - x + 3$. Корни последнего многочлена и будут искомыми.

Ответ:
$$\frac{-1 \pm \sqrt{13}}{2}$$
.

4. Найдите наименьшее натуральное число n такое, что n > 2015 и $\left[\sqrt{9n+2}\right] \neq \left[\sqrt{9n+4}\right]$. Здесь скобки [] обозначают целую часть числа. (Напомним, что целой частью числа x называется наибольшее целое число, не превосходящее x. Например, [3,7]=3.)

Решение: Целые части чисел a и b равны в том и только том случае, когда полуинтервал (a,b]не содержит целые числа. Чтобы при каком-то натуральном n имело место неравенство $\lceil \sqrt{9n+2} \rceil \neq \lceil \sqrt{9n+4} \rceil$ должно существовать натуральное число $\sqrt{9n+2} < m \le \sqrt{9n+4} \Leftrightarrow 9n+2 < m^2 \le 9n+4$. Следовательно, m^2 равен либо 9n+3, либо 9n+4. Но квадрат целого числа при делении на 9 не может дать остаток 3. Значит, остается вариант $m^2 = 9n + 4$. Итак, будем искать такие n, при которых число 9n + 4 представляет собой полный квадрат. При делении на 9 квадрат целого числа дает остаток 4, только когда само число при дает остаток 2. Поэтому, полагаем $m = 9t + 2, t \in \mathbb{N}_0$. 9 делении на $(9t+2)^2 = 9n+4 \Leftrightarrow n=9t^2+4t$. Остается выбрать наименьшее натуральное t такое, что $9t^2 + 4t \ge 2015$. Для этого оценим больший корень уравнения $9t^2 + 4t - 2015 = 0$:

$$t_{\text{max}} = \frac{-2 + \sqrt{4 + 9 \cdot 2015}}{9}.$$

Поскольку $134 < \sqrt{4+9\cdot 2015} < 135$, заключаем, что $14 < t_{\text{max}} < 15$, и искомое n равно $9\cdot 15^2 + 4\cdot 15 = 2085$.

Ответ: 2085.

- **5.** Имеется n целых чисел $0,1,2,\ldots,n-1$. Переставив эти числа в случайном порядке, получим их некоторую n перестановку (i_1,i_2,\ldots,i_n) . Из исходного набора чисел $(0,1,2,\ldots,n-1)$ и этой перестановки (i_1,i_2,\ldots,i_n) получим новый набор чисел (a_1,a_2,\ldots,a_n) по правилу: $a_1 = r_n (0+i_1), a_2 = r_n (1+i_2),\ldots,a_n = r_n ((n-1)+i_n)$, где $r_n(m)$ остаток от деления числа m на число n. (Например, пусть n=3. Тогда, из исходного набора (0,1,2) и перестановки $(i_1,i_2,i_3)=(1,2,0)$ получится набор $(a_1,a_2,a_3)=(1,0,2)$, т.к. $r_3(0+1)=1,r_3(1+2)=0,r_3(2+0)=2$.)
 - а) При n=9 приведите пример такой перестановки $(i_1,i_2,...,i_9)$, что в соответствующем наборе $(a_1,a_2,...,a_9)$ все числа различны;
 - б) докажите, что, если n=10, то какую бы перестановку (i_1,i_2,\ldots,i_{10}) мы ни взяли, в наборе (a_1,a_2,\ldots,a_{10}) обязательно встретятся одинаковые числа.

Решение: a) Например, $(i_1, i_2, ..., i_9) = (1, 2, 3, 4, 5, 6, 7, 8, 0);$

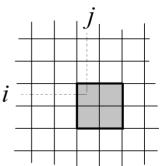
- б) По условию $(0+1+\ldots+9)+(i_1+\ldots+i_{10})=a_1+\ldots+a_{10}\pmod{10}$. Если бы все a_i были различны, то сумма чисел в правой части была бы равна 45. Но равенство $45+45=45\pmod{10}$ не справедливо. Поэтому среди чисел (a_1,a_2,\ldots,a_{10}) есть одинаковые.
- **6.** Дно прямоугольного ящика заложили плитками двух типов так, что всё дно ими покрыто, и ни одна из плиток даже частично не накрывает другую. После транспортировки одна из плиток первого типа оказалась повреждённой, и её заменили плиткой второго типа. Могло ли так оказаться, что все плитки снова удалось уложить в ящик так, что дно оказалось вновь полностью покрытым? Ответ обоснуйте.

 -1 тип

 -2 тип

Решение: Пусть сейчас у нас дно ящика уложено плитками двух типов. Поставим каждой плитке в соответствие число. Рассмотрим, к примеру, плитку 1-го типа. Пусть ее верхний левый угол лежит в i-той строке и j-том столбце, то есть имеет координаты (i,j). Остальные три ячейки этой плитки имеют координаты (i+1,j), (i,j+1), (i+1,j+1). Сложим координаты всех ее четырех ячеек: i+j+(i+1)+j+i+(j+1)+(i+1)+(j+1)=4i+4j+4, затем вычислим остаток от деления на 4 получившейся суммы — это 0. Итак, плитке первого типа мы поставили по

определенному правилу в соответствие число (ноль), и, что важно, это число не будет меняться, если плитку передвигать. По такому же правилу, плитка 2-го типа (неважно горизонтальна она или вертикальна), после сложения координат ее ячеек и взятия остатка от деления на 4, получит в соответствие число 2. Теперь для всех плиток сложим поставленные им в соответствие числа и у полученной суммы вычислим остаток от деления на 4. Получится некоторое число S, которое, очевидно, равно (по модулю 4) сумме координат всех ячеек на дне



ящика. Таким образом, S — уникальное число, которое определяется лишь размерами дна ящика (числом строк и столбцов) и <u>не зависим ом способа замощения плитками.</u> Если бы после замены плитки 1-го типа на плитку 2-ого типа, вновь удалось бы замостить дно, то сумма S изменилась бы на 2, что невозможно.

Ответ: не могло.

7. Найдите значение выражения $a^4 + b^4 + c^4$, если известно, что числа a, b, c удовлетворяют

соотношениям:
$$\begin{cases} a+b+c=4\\ a^2+b^2+c^2=9\\ a^3+b^3+c^3=19. \end{cases}$$

Решение: Обозначим X = a + b + c, $Y = a^2 + b^2 + c^2$, $Z = a^3 + b^3 + c^3$, U = ab + bc + ac. Тогда $X^2 = Y + 2U$, откуда

$$U = \left(X^2 - Y\right)/2. \tag{1}$$

Далее

$$X^{3} = Z + 3(a^{2}b + ab^{2} + a^{2}c + ac^{2} + b^{2}c + bc^{2}) + 6abc =$$

$$= Z + 3ab(a+b+c) + 3ac(a+b+c) + 3bc(a+b+c) - 3abc = Z + 3UX - 3abc.$$

Отсюда

$$abc = (-X^3 + Z + 3UX)/3.$$
 (2)

Наконец,

$$XZ = a^{4} + b^{4} + c^{4} + a(b^{3} + c^{3}) + b(a^{3} + c^{3}) + c(a^{3} + b^{3}) =$$

$$= a^{4} + b^{4} + c^{4} + (ab + bc + ac)(a^{2} + b^{2} + c^{2}) - c^{2}ab - a^{2}bc - b^{2}ac =$$

$$= a^{4} + b^{4} + c^{4} + UY - abcX.$$

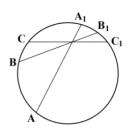
Находим искомое выражение:

$$a^4 + b^4 + c^4 = XZ - UY + abcX. (3)$$

По условию X = 4, Y = 9, Z = 19. Из (1) находим U = 7/2, затем из (2): abc = -1, и с помощью (3) получаем ответ: $a^4 + b^4 + c^4 = 81/2$.

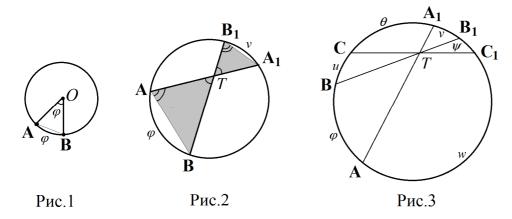
Ответ: 81/2.

8. В окружности три хорды AA_1 , BB_1 , CC_1 пересекаются в одной точке. Угловые меры дуг AC_1 , AB, CA_1 и A_1B_1 равны соответственно 150° , 30° , 60° и 30° . Найдите угловую меру дуги B_1C_1 .



Решение: Сформулируем несколько вспомогательных утверждений.

- 1) Пусть угловая мера дуги AB (рис.1) равна φ . (Это означает, что φ равен соответствующий центральный угол AOB.) Тогда длина хорды $AB = 2R\sin(\varphi/2)$. Здесь R радиус окружности.
- 2) Пусть две хорды AA_1 и BB_1 пересекаются в точке T (рис.2). Угловые меры дуг AB и A_1B_1 равны φ и v. Треугольники ATB и A_1TB_1 подобны по двум углам (равные углы отмечены). Коэффициент подобия $k = AB / A_1B_1 = \sin(\varphi/2)/\sin(v/2)$.



3) Обратимся к рисунку 3. В одной точке, обозначенной Т, пересекаются три хорды. Угловые меры получившихся шести дуг отмечены на рисунке. Из подобия треугольников ATB и A_1TB_1 следует (см. пункт 2) равенство $AT/B_1T = \sin(\varphi/2)/\sin(v/2)$. Аналогично, $\Delta BTC \square \Delta B_1TC_1 \Rightarrow B_1T/CT = \sin(\psi/2)/\sin(u/2)$, $\Delta CTA_1 \square \Delta ATC_1 \Rightarrow CT/AT = \sin(\theta/2)/\sin(w/2)$. Перемножив три последних равенства, получим:

 $1 = AT / B_1 T \cdot B_1 T / CT \cdot CT / AT = \sin(\varphi / 2) / \sin(\psi / 2) \cdot \sin(\psi / 2) / \sin(u / 2) \cdot \sin(\theta / 2) / \sin(w / 2).$

Таким образом, необходимым (а на самом деле и достаточным) условием того, что три хорды пересекаются в одной точке является равенство:

$$\sin(\varphi/2)\sin(\theta/2)\sin(\psi/2) = \sin(u/2)\sin(v/2)\sin(w/2).$$

Теперь несложно получить ответ в задаче. Подставив в это соотношение данные задачи $w = 150^{\circ}, \varphi = 30^{\circ}, \theta = 60^{\circ}, v = 30^{\circ}, a$ также выразив u из равенства $\varphi + u + \theta + v + \psi + w = 360^{\circ},$ получаем для определения искомого угла ψ следующее уравнение:

$$\sin 15^{0} \sin(\psi / 2) \sin 30^{0} = \sin 15^{0} \sin((90^{0} - \psi) / 2) \sin 75^{0}.$$

Отсюда несложно получить, что $\psi = 60^{\circ}$.

Ответ: 60⁰.